skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bando, Takashi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fog computing has been advocated as an enabling technology for computationally intensive services in connected smart vehicles. Most existing works focus on analyzing and opti- mizing the queueing and workload processing latencies, ignoring the fact that the access latency between vehicles and fog/cloud servers can sometimes dominate the end-to-end service latency. This motivates the work in this paper, where we report a five- month urban measurement study of the wireless access latency between a connected vehicle and a fog computing system sup- ported by commercially available multi-operator LTE networks. We propose AdaptiveFog, a novel framework for autonomous and dynamic switching between different LTE operators that implement fog/cloud infrastructure. The main objective here is to maximize the service confidence level, defined as the probability that the tolerable latency threshold for each supported type of service can be guaranteed. AdaptiveFog has been implemented on a smart phone app, running on a moving vehicle. The app periodically measures the round-trip time between the vehicle and fog/cloud servers. An empirical spatial statistic model is established to characterize the spatial variation of the latency across the main driving routes of the city. To quantify the perfor- mance difference between different LTE networks, we introduce the weighted Kantorovich-Rubinstein (K-R) distance. An optimal policy is derived for the vehicle to dynamically switch between LTE operators’ networks while driving. Extensive analysis and simulation are performed based on our latency measurement dataset. Our results show that AdaptiveFog achieves around 30% and 50% improvement in the confidence level of fog and cloud latency, respectively. 
    more » « less